5 research outputs found

    Ionizing Radiation Effects in Silicon Photonics Modulators

    No full text
    Silicon photonics (SiPh) shows considerable potential as a radiation-hard technology for building the optical data transmission links for future high-energy physics (HEP) experiments at CERN. Optical modulators are a key component of optical links, which will need to withstand radiation doses in excess of 10 MGy. The geometrical parameters and doping concentrations of two popular types of SiPh modulators, Mach–Zehnder and ring modulators (RMs), have been varied in order to study their impact on the device radiation tolerance. They were exposed to an X-ray beam to test their resistance to ionizing radiation. The RM with the highest doping concentration is shown to be the most tolerant, showing no degradation in performance up to the highest dose of 11 MGy. Moreover, we report first evidence of the dependence of the radiation tolerance on the RM operating temperature.Silicon photonics (SiPh) shows considerable potential as a radiation-hard technology for building the optical data transmission links for future high-energy physics (HEP) experiments at CERN. Optical modulators are a key component of optical links, which will need to withstand radiation doses in excess of 10 MGy. The geometrical parameters and doping concentrations of two popular types of SiPh modulators, Mach–Zehnder and ring modulators (RMs), have been varied in order to study their impact on the device radiation tolerance. They were exposed to an X-ray beam to test their resistance to ionizing radiation. The RM with the highest doping concentration is shown to be the most tolerant, showing no degradation in performance up to the highest dose of 11 MGy. Moreover, we report first evidence of the dependence of the radiation tolerance on the RM operating temperature

    Strategic R&D Programme on Technologies for Future Experiments - Annual Report 2020

    No full text
    This report summarises the activities and achievements of the strategic R&D programme on technologies for future experiments in the year 2020

    Strategic R&D Programme on Technologies for Future Experiments - Annual Report 2021

    No full text
    This report summarises the activities and main achievements of the CERN strategic R&D programme on technologies for future experiments during the year 2021

    Annual Report 2022

    No full text
    This report summarises the activities and main achievements of the CERN strategic R&D programme on technologies for future experiments during the year 202

    Extension of the R&D Programme on Technologies for Future Experiments

    No full text
    we have conceived an extension of the R&D programme covering the period 2024 to 2028, i.e. again a 5-year period, however with 2024 as overlap year. This step was encouraged by the success of the current programme but also by the Europe-wide efforts to launch new Detector R&D collaborations in the framework of the ECFA Detector R&D Roadmap. We propose to continue our R&D programme with the main activities in essentially the same areas. All activities are fully aligned with the ECFA Roadmap and in most cases will be carried out under the umbrella of one of the new DRD collaborations. The program is a mix of natural continuations of the current activities and a couple of very innovative new developments, such as a radiation hard embedded FPGA implemented in an ASIC based on System-on-Chip technology. A special and urgent topic is the fabrication of Al-reinforced super-conducting cables. Such cables are a core ingredient of any new superconducting magnet such as BabyIAXO, PANDA, EIC, ALICE-3 etc. Production volumes are small and demands come in irregular intervals. Industry (world-wide) is no longer able and willing to fabricate such cables. The most effective approach (technically and financially) may be to re-invent the process at CERN, together with interested partners, and offer this service to the community
    corecore